• Description

Probabilistic, seasonal to interannual streamflow forecasts are becoming increasingly available as the ability to model climate teleconnections is improving. However, water managers and practitioners have been slow to adopt such products, citing concerns with forecast skill. Essentially, a management risk is perceived in ?gambling? with operations using a probabilistic forecast, while a system failure upon following existing operating policies is ?protected? by the official rules or guidebook. In the presence of a prescribed system of prior allocation of releases under different storage or water availability conditions, the manager has little incentive to change. Innovation in allocation and operation is hence key to improved risk management using such forecasts. A participatory water allocation process that can effectively use probabilistic forecasts as part of an adaptive management strategy is introduced here. Users can express their demand for water through statements that cover the quantity needed at a particular reliability, the temporal distribution of the ?allocation,? the associated willingness to pay, and compensation in the event of contract nonperformance. The water manager then assesses feasible allocations using the probabilistic forecast that try to meet these criteria across all users. An iterative process between users and water manager could be used to formalize a set of short-term contracts that represent the resulting prioritized water allocation strategy over the operating period for which the forecast was issued. These contracts can be used to allocate water each year/season beyond long-term contracts that may have precedence. Thus, integrated supply and demand management can be achieved. In this paper, a single period multiuser optimization model that can support such an allocation process is presented. The application of this conceptual model is explored using data for the Jaguaribe Metropolitan Hydro System in Ceara, Brazil. The performance relative to the current allocation process is assessed in the context of whether such a model could support the proposed short-term contract based participatory process. A synthetic forecasting example is also used to explore the relative roles of forecast skill and reservoir storage in this framework.

Improved Water Allocation Utilizing Probabilistic Climate Forecasts: Short-term Water Contracts in a Risk Management Framework