Running Hard and Falling Behind:
A Welfare Analysis of Two-Earner Families

Julie L. Hotchkiss
Mary Mathewes Kassis
Robert E. Moore

College of Business Administration
Georgia State University
Atlanta, Georgia

November 1994
Georgia State University

Carl V. Patton President
Ronald J. Henry Provost
Cleon Arrington Vice President for Research and Information Technology

College of Business Administration

John D. Hogan Dean

Policy Research Center

Roy Bahl Director
Jorge L. Martinez Associate Director, International Studies
David L. Sjoquist Associate Director, Domestic Studies
David Sandt Associate Director, Administration
Ronald G. Cummings Noah Langdale Chair
Francis W. Rushing Bernard A. and Eugenia A. Ramsey Chair

Senior Associates

Shomu Banerjee Laura Osborne
Chris Bollinger Rubin Saposnik
Paul Brewer Samuel Skogstad
Carol Ann Dalton Bruce Seaman
Julie L. Hotchkiss Paula E. Stephan
Keith R. Ihlanfeldt Mary Beth Walker
Jennifer McCoy Sally Wallace
Richard McHugh Thomas L. Weyandt, Jr.
Robert E. Moore

Graduate Research Assistants

Harold Ball Steve Everhart Adam Korobow Joey Smith
Grant Black Dagny Falk Fitzroy Lee
Jamie Boex Robert Flagge Steven Maguire
David Bowes Kate Gardner Robert McNab
Edith Cash Chris Geller James Murphy
Robbie Collins Jill Gunderson Glenwood Ross
Barbara Edwards Richard Hawkins Sal Sehili

Administrative Staff

Curtis Augustin Systems Analyst
Angela Y. Harris Microcomputer Software Technical Specialist
Chayne Johnson Receptionist
Kate Nickerson Librarian
Wayne Parrish Assistant to the Director
Helen Rosier Microcomputer Software Technical Specialist
Rosetta Smith Senior Administrative Secretary
Arthur D. Turner Microcomputer Software Technical Specialist
Trudy Turner Administrative Secretary
About the Authors...

Dr. Julie Hotchkiss is Assistant Professor of Economics and Senior Associate in the Policy Research Center at Georgia State University. Her research topics have included the effects of unemployment insurance on job search strategies, estimating gender compensation differentials, and determining the appropriate definition of part-time employment. This research has appeared in academic journals such as *International Economic Review, Economic Development and Cultural Change, Industrial Relations Research Association Proceedings*, and *Economics Letters*.

Mary Mathewes Kassis is a Graduate Research Assistant in the Economic Forecasting Center at Georgia State University. Her interests include labor economics and public finance and her dissertation is an analysis of the incidence of the social security payroll tax.

Dr. Robert Moore is Assistant Professor of Economics and Senior Associate of the Policy Research Center at Georgia State University. His research on international trade and economic development issues has appeared in academic journals such as *Quarterly Journal of Economics, Journal of Development Economics, Journal of World Trade*, and *Economic Development and Cultural Change*.
EXECUTIVE SUMMARY

This paper investigates the commonly asserted proposition that long term economic changes have put the family in a financial bind. Using a family utility model to estimate the parameters of a family utility function, we find evidence indicating that the average 1990's two-earner family would prefer to receive the 1980's real wage package (were it available) instead of the real wage package that it actually faces. The degree to which the 1990's family is worse off (in terms of the changes in the real wage package) is roughly equivalent to an hour of leisure per week.
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. i

LIST OF FIGURES AND TABLES ... iii

INTRODUCTION ... 1

METHOD ... 2

EMPIRICAL ESTIMATION .. 4

INTERPRETATION OF RESULTS .. 6
 Isolating the Change in Wages ... 6
 Total Change in Utility .. 7
 Implication for Adjustments in Consumption 7

CONCLUSION ... 8

REFERENCES ... 12

APPENDIX A: First Order Conditions of Utility Maximization Problem, Labor
 Supply Equations, and Likelihood Function Estimated 13

APPENDIX B: Functions of Estimated Parameters and Heir 95% Confidence
 Intervals Generated by Standard Bootstrapping Techniques 15
LIST OF FIGURES AND TABLES

FIGURE 1: Average Hourly Real Wage for Married Males and Females (1982-84 dollars) and the Married Female/Male Wage Ratio 1

TABLE 1: Means and Standard Deviations of Variables for Sample Used in Estimation, N = 2,910 families ... 9

TABLE 2: Estimated Parameter Values for Quadratic Family Utility Function 10
RUNNING HARD AND FALLING BEHIND:
A WELFARE ANALYSIS OF TWO-EARNER FAMILIES

Julie L. Hotchkiss, Mary Mathewes Kassis, and Robert E. Moore

Introduction

The 1980s and early 1990s have seen tremendous progress in the equalization of wages of males and females. Although married women in 1993 still only earned about 76 cents for every dollar earned by married men, this figure represents a 15 percent increase in the female/male wage ratio between 1983 and 1993 (see Figure 1).\(^1\) Analyses in the economics literature on the size of and changes in the wage differential between men and women typically either focus on the issue of equity (i.e., equally productive men and women should receive equal compensation), or on the economic concern that an important factor of production (the human capital of women) is being mis-allocated as a result of non-economic barriers to certain (high-paying) occupations.\(^2\) Based on both an equity and efficiency criterion, then, one could easily argue that the rise in the female/male wage ratio is a good thing.

![Graph showing wage data](image)

Figure 1. Average hourly real wage for married males and females (1982-84 dollars) and the married female/male wage ratio.

\(^1\)Note that the wage ratio had remained roughly constant for decades prior 1980 (see Gunderson, 1989). Average wages were computed using annual national averages reported in Employment and Earnings and correspond to husbands and wives whose spouses are working.

\(^2\)See, for example, Gunderson (1989) and Bound and Johnson (1992).
What has not been addressed before now is how the rise in the wage ratio has impacted the welfare of the two-earner family, given that the rise is partly driven by a decline in the male real wage. The analysis in this paper is directed at determining how the changes in the real wages of married men and women, taken together, have affected the two-earner family. Specifically we ask, within a family utility framework, whether the average two-earner family of the 1990s would prefer the real wage package it currently faces, or the real wage package that prevailed during the previous decade. Although the 1990s family is experiencing a greater average level of real consumption than the 1980s family, such a simple comparison fails to take into account the relative value the family places on the leisure that has been sacrificed to attain the higher level of consumption. We find convincing evidence that the 1990s two-earner family would prefer the 1980s wage package and therefore can be said to be worse off than an equivalent two-earner 1980s family. The degree to which the family is worse off is roughly equivalent to the (marginal) value of an hour of leisure per week, or the consumption that could be earned with a week's pay per year. Our results are consistent with popular press reports that today's family faces an ever-increasing burden in trying to maintain a middle-class standard of consumption.

Method

Within the framework of the neoclassical family labor supply model, a family maximizes a utility function that is a function of the husband's leisure, the wife's leisure, and their joint consumption, subject to a single budget constraint:

3Kaestner (1993) explores how labor supply of married couples is affected by wage changes and the addition of children and how those labor supply responses have changed over time, but he does not explore how these changes have affected family welfare.

4We constrain the problem to consider only the case of two-earner families since the welfare effect of decreasing male real wages on male single-earner families is obvious, as is the effect of the rising female real wage on the well-being of female single-earner families.

5For example, see Hewlett (1990), Otten (1994), and Uchitelle (1994).
\[
\begin{align*}
\max_{\{L_1, L_2, X\}} U &= U(T-h_1, T-h_2, X) \\
\text{Subject to } X &= w_1 h_1 + w_2 h_2 + Y. \quad (1)
\end{align*}
\]

T is total time available for an individual, \(L_1 = T-h_1\) is the husband's leisure, \(L_2 = T-h_2\) is the wife's leisure, \(h_1\) is the labor supply of the husband, \(h_2\) is the labor supply of the wife, \(X\) is total money income (or consumption with price equal to one), \(Y\) is non-labor income, \(w_1\) is the husband's market wage and \(w_2\) is the wife's market wage.\(^6\) Since we are limiting the discussion to families where both spouses work, \(h_1\) and \(h_2\) are also constrained to be positive.

The solution to the above maximization problem can be expressed in terms of the indirect utility function, which is solely a function of the wages of the husband and wife and non-labor income of the family:

\[
V(w_1, w_2, Y) = U\left\{ \left[T-h_1^*(w_1, w_2, Y) \right] , \left[T-h_2^*(w_1, w_2, Y) \right] , \left[w_1 h_1^*(w_1, w_2, Y) + w_2 h_2^*(w_1, w_2, Y) + Y \right] \right\}, \quad (2)
\]

where \(h_1^*(w_1, w_2, Y)\) and \(h_2^*(w_1, w_2, Y)\) correspond to the optimal labor supply equations for the husband and wife, respectively. In order to capture the total effect of the wage changes observed during the 1980s on family utility at each member's optimal leisure choice, we totally differentiate the indirect utility function:

\[
dV = -U_1 dh_1 - U_2 dh_2 + U_3 dX, \quad (3)
\]

where \(U_1\) is the family's marginal utility of the husband's leisure, \(U_2\) is the family's marginal utility of the wife's leisure, and \(U_3\) is the family's marginal utility of consumption. Expressed in terms of changes in non-labor income and wages, the total derivative becomes:

\(^6\)We choose the neoclassical framework in order to obtain a clear-cut specification of family welfare. Although a household bargaining model might tell us more about how the behaviors of individual household members respond to wage changes, it does not readily lend itself to evaluation of the welfare of the family unit.

\(^7\)Although we refer to \(L_1\) and \(L_2\) as the "leisure" of the husband and wife, respectively, they actually correspond to all uses of non-market time, including home production activities.
\[dV = \left. -U_1 \frac{\partial h_1}{\partial w_1} - U_2 \frac{\partial h_2}{\partial w_1} + U_3 \left[w_1 \frac{\partial h_1}{\partial w_1} + h_1 + w_2 \frac{\partial h_2}{\partial w_1} \right] \right| dw_1 \\
+ \left. -U_1 \frac{\partial h_1}{\partial w_2} - U_2 \frac{\partial h_2}{\partial w_2} + U_3 \left[w_1 \frac{\partial h_1}{\partial w_2} + h_2 + w_2 \frac{\partial h_2}{\partial w_2} \right] \right| dw_2 \\
+ \left. -U_1 \frac{\partial h_1}{\partial Y} - U_2 \frac{\partial h_2}{\partial Y} + U_3 \left[w_1 \frac{\partial h_1}{\partial Y} + 1 + w_2 \frac{\partial h_2}{\partial Y} \right] \right| dY \] \tag{4}

The direction (sign) of the change in utility at the optimal leisure choices that results from changes in the husband's and wife's wage and changes in non-labor income cannot be determined analytically; it depends on the relative size of labor supply responses of the husband and wife to own and to spouse wage changes, as well as on the relative size of the additional utility the family attains from an additional unit of leisure enjoyed by the husband and wife. Consequently, in order to obtain estimates of the pieces of the total derivative in equation \(4\) a family labor supply model is estimated empirically.

The impact of the wage changes on family utility is isolated from changes in non-labor income by calculating the change in family utility that occurs when the wages change, but non-labor income does not. This is accomplished by evaluating equation \(4\) when \(dY=0\).

Empirical Estimation

To obtain estimates to use in evaluating equation \(4\), we appeal to the family utility framework presented by Ransom (1987). He specifies a quadratic form of the utility function:

\[U(Z) = \alpha(Z) - (1/2)Z'\beta Z, \] \tag{5}

where \(Z\) is a vector with elements \(Z_1 = T - h_1, Z_2 = T - h_2\) and \(Z_3 = w_1 h_1 + w_2 h_2 + Y\); \(\alpha\) is a vector of parameters and \(\beta\) is a matrix of parameters. This utility function belongs to the class of flexible functional forms in the sense that it can be thought of as a second order approximation to an arbitrary utility function when \(\beta\) is positive definite.\(^8\)

\(^8\)The estimation performed resulted in a positive definite \(\beta\) matrix.
The first order conditions, the labor supply equations, and the likelihood function estimated to obtain structural parameter estimates are found in Ransom (1987: 467-8).\(^9\) The specification of the likelihood function allows for simultaneous labor supply decisions of the husband and wife. The March 1993 Current Population Survey (CPS) was used to construct the sample for which the family labor supply model was estimated. Table 1 contains the means and standard deviations of the variables for the sample. The responses correspond to work behavior during March 1993. The wage and non-labor income are reported in real (1982-84) dollar values. On average, husbands (wives) work about 43 (about 36) hours per week and earn $10.00 ($7.52) per hour. Families receive about $45 of non-labor income per week. Husbands are slightly older than wives and both have about the same level of education.

The parameter estimates are reported in Table 2. Unlike Ransom (1987) we include children regressors in the labor supply equation of the husband, as well as the wife. (Excluding these regressors from the husband's labor supply equation did not alter the conclusions of the paper.) Estimates of the marginal utilities of leisure and consumption, as well as the own and cross wage elasticities are also reported in Table 2.\(^{10}\) The coefficients on the variables included in the labor supply equation are all of the expected sign and, for the most part, highly significant. Children have more of an impact on the labor supply decisions of the wife than the husband. The marginal utilities are all positive and significantly different from zero. Both the husband's and wife's own wage elasticities are positive and, although small, significantly different from zero. The cross-wage elasticities are insignificant and so is the wife's income elasticity. The husband's income elasticity is of the appropriate sign and significantly different from zero.\(^{11}\)

\(^9\)These are repeated in Appendix A for the convenience of the reader. Appendix A also contains details on obtaining estimates for equation (4).

\(^{10}\)95% confidence intervals for all functions of the estimated parameters were generated using standard bootstrapping techniques. 200 repetitions were performed and the results are reported in Appendix B. Details of bootstrapping techniques can be found in Efron (1982).

\(^{11}\)If the source of non-labor income matters in the labor supply response of the husband and wife, as suggested by Schultz (1990), the positive effect of non-labor income on the husband's labor supply and the corresponding absence of an income effect on the wife's labor supply could be suggesting that the bulk of non-labor income is generated by the husband.
Inserting the parameter estimates and the mean values for h_1, h_2, w_1, w_2, and Y into equation (4), we have:

$$dV = (4.98)dw_1 + (4.22)dw_2 + (0.12)dY.$$ 12 (6)

The evaluation of equation (6), tells us how the 1990s family utility is affected by any changes in wage and non-labor income experienced through dw_1, dw_2, and dY. To determine how wage changes over the last 10 years affect the utility of the 1990s family, dw_1 (dw_2) was calculated as the difference between the average real wage of husbands (wives) who have a working spouse in 1983 and 1993.13 The average wages were calculated using hours and earnings information from the \textit{Employment and Earnings} publication. dw_1 was calculated as -0.63 per hour and dw_2 was calculated as 0.52 per hour. The change in non-labor income (dY) was calculated using the (weighted) average non-labor income reported by families in the 1983 and 1993 Current Population Surveys and is 3.24 per week (in 1982-84 dollars).

Interpretation of Results

\textit{Isolating the Change in Wages}

Setting $dY=0$ in equation (6) yields a picture of the actual impact on utility resulting solely from the trade-off of wives' for husbands' earnings through changes in their respective wages. The simulated decline in the husband's wage along with the simulated increase in the wife's wage alone result in a decline of total utility of 0.94.14 This -0.94 change in utility is equivalent (given the estimated marginal utilities of the husband's and wife's leisure) to a loss of 0.93 hours of leisure per week for the husband or a loss of 1.39 hours of leisure per week for the wife (which translates into 48.4 hours per year for the husband and 72.3 hours per year for the wife).15

12Each of these numerical pieces is significantly different from zero at the 95% confidence level.

13Our focus on the most recent decade incorporates the majority of the time period over which the rise in the female/male real wage ratio has been the most dramatic. See footnote 1.

14This estimate is significantly different from zero at the 95% confidence level. The confidence interval is reported in Appendix B.

15$dL_1=(dV/U_1)$ and $dL_2=(dV/U_2)$.
Total Change in Utility

This reduction in utility holds even when we account for the estimated increase in non-labor income. Total family utility decreased by a magnitude of 0.56.16 This is equivalent to 0.55 of an hour of husband's leisure per week and 0.83 of an hour of wife's leisure per week (this translates into 28.6 hours per year for the husband and 43.2 hours per year for the wife).

Implication for Adjustments in Consumption

Since non-labor income appears to have increased over the last 10 years, the decline in total utility clearly stems from the changes in wages and the resulting adjustments in leisure. Changes in both the wages and non-labor income, however, have an implication for total money income, or consumption of the family. Given our family utility function parameter estimates, we calculated that the 1990's family would have received more total money income with the 1980's wage package than with the 1990's wage package, suggesting that we should have seen a decline in total money income over the last decade. We calculated the predicted change in total money income from the wage and non-labor income changes over the last decade by inserting our estimated parameters into:

\[
dX = \left[w_1 \frac{\partial h_1}{\partial w_1} + h_1 + w_2 \frac{\partial h_2}{\partial w_1} \right] dw_1 + \left[w_1 \frac{\partial h_1}{\partial w_2} + h_2 + w_2 \frac{\partial h_2}{\partial w_2} \right] dw_2 \\
+ \left[w_1 \frac{\partial h_1}{\partial Y} + 1 + w_2 \frac{\partial h_2}{\partial Y} \right] dY, \tag{7}
\]

and predicted a total money income decline of approximately 0.6%.17 However, we have not seen a decrease in consumption over this time period. Real median family income has actually increased at an average annual rate of approximately 3%.18 Though the predicted and the observed changes are both small in magnitude, they are different in direction. Part of the problem may be our

16This estimate is also significantly different from zero at the 95\% confidence level. The confidence interval is reported in Appendix B.

17The estimate of dX is significantly different from zero at the 95\% confidence level. See Appendix B.

18(Statistical Abstract for the United States, 1993). This figure is for all families, not just two-earner families. A comparable figure for two-earner families is not available.
inability to obtain a perfect match between our "predicting" and "observed" groups. In addition to the fact that the 3% increase in family income is observed for all families, not just two-earner families, another important difference between the "predicting" and "observed" group is that the "observed" group includes demographic changes. In the presence of demographic changes, such as the increasing average age of the population, the presence of long-term consumption contracts (such as home mortgages and whole life insurance policies) may tend to constrain the average consumption of families, not allowing them to easily adjust consumption downward.

Conclusion

For several years now the popular media has been lamenting the financial plight of the family. Anecdotes abound of the difficulty families have in making ends meet.19 Our study is the first to empirically document the financial squeeze on the two-earner family and to estimate its magnitude. We find that the average two-earner family has suffered a loss roughly equivalent to one hour of leisure per week when accounting for the changes, over the last decade, in real average male and female wages alone. While adding in the effect of the change in non-labor income reduces the loss, it is still equivalent to greater than a half hour of leisure per week.

This research may be extended in a number of ways. For example, exploration of why consumption seems to have increased when the theoretical model predicts a decline and making use of longitudinal data would contribute to even greater understanding of the welfare response of families who face changes in their non-labor income and prices of leisure.

Possible limitations of this study include our inability to control for changes in non-wage benefits and taxes over the decade examined. The rise in benefits as a proportion of total compensation may dampen our results, however if the benefits offered a two-earner family are redundant, the impact of not being able to measure benefit receipt is lowered. In addition, we expect that being able to incorporate the generally rising taxes over the decade (e.g., social security, property, and sales taxes) would magnify our results.

19For example, see Hewlett (1990), Otten (1994), and Uchitelle (1994).
Table 1. Means and standard deviations of variables for sample used in estimation, \(N = 2,910 \) families.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>42.71</td>
<td>(8.58)</td>
</tr>
<tr>
<td>(h_2)</td>
<td>35.78</td>
<td>(10.07)</td>
</tr>
<tr>
<td>(w_1)</td>
<td>$10.00</td>
<td>(5.20)</td>
</tr>
<tr>
<td>(w_2)</td>
<td>$7.52</td>
<td>(4.84)</td>
</tr>
<tr>
<td>(Y)</td>
<td>$45.02</td>
<td>(107.07)</td>
</tr>
<tr>
<td>Black(_1 = 1)</td>
<td>0.07</td>
<td>(0.25)</td>
</tr>
<tr>
<td>Black(_2 = 1)</td>
<td>0.06</td>
<td>(0.24)</td>
</tr>
<tr>
<td>Age(_1)</td>
<td>40.96</td>
<td>(10.19)</td>
</tr>
<tr>
<td>Age(_2)</td>
<td>38.76</td>
<td>(9.69)</td>
</tr>
<tr>
<td>HS(_1 = 1)</td>
<td>0.91</td>
<td>(0.28)</td>
</tr>
<tr>
<td>HS(_2 = 1)</td>
<td>0.93</td>
<td>(0.26)</td>
</tr>
<tr>
<td>COL(_1 = 1)</td>
<td>0.30</td>
<td>(0.46)</td>
</tr>
<tr>
<td>COL(_2 = 1)</td>
<td>0.27</td>
<td>(0.45)</td>
</tr>
<tr>
<td>NKIDS</td>
<td>2.12</td>
<td>(2.24)</td>
</tr>
<tr>
<td>PRE SCHL(_1 = 1)</td>
<td>0.27</td>
<td>(1.07)</td>
</tr>
</tbody>
</table>

Notes: Wages and non-labor income are in real terms (1982-84 CPI=1.445). \(h_1 \) and \(h_2 \) are in terms of hours per week. \(Y \) is in terms of dollars per week.
Table 2. Estimated parameter values for quadratic family utility function; two specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient (s.e.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements of α_1^*</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>53.913* (2.963)</td>
</tr>
<tr>
<td>Black$_1 = 1$</td>
<td>-1.710* (0.672)</td>
</tr>
<tr>
<td>HS$_1 = 1$</td>
<td>1.911* (0.533)</td>
</tr>
<tr>
<td>COL$_1 = 1$</td>
<td>1.930* (0.316)</td>
</tr>
<tr>
<td>AGE$_1$</td>
<td>-0.059* (0.014)</td>
</tr>
<tr>
<td>NKIDS</td>
<td>-0.154 (0.117)</td>
</tr>
<tr>
<td>PRESCHL = 1</td>
<td>-0.631 (0.496)</td>
</tr>
<tr>
<td>Elements of α_2^*</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>30.627* (7.261)</td>
</tr>
<tr>
<td>Black$_2 = 1$</td>
<td>0.328 (0.422)</td>
</tr>
<tr>
<td>HS$_2 = 1$</td>
<td>-0.175 (0.264)</td>
</tr>
<tr>
<td>COL$_2 = 1$</td>
<td>0.578* (0.191)</td>
</tr>
<tr>
<td>AGE$_2$</td>
<td>-0.054* (0.015)</td>
</tr>
<tr>
<td>NKIDS</td>
<td>-0.353* (0.112)</td>
</tr>
<tr>
<td>PRESCHL = 1</td>
<td>-0.616* (0.297)</td>
</tr>
<tr>
<td>α_3^*</td>
<td>0.187* (0.038)</td>
</tr>
<tr>
<td>β_{11}</td>
<td>1.000</td>
</tr>
<tr>
<td>β_{22}</td>
<td>0.440* (0.118)</td>
</tr>
<tr>
<td>β_{33}</td>
<td>0.0001* (0.00003)</td>
</tr>
<tr>
<td>β_{12}</td>
<td>0.305* (0.070)</td>
</tr>
<tr>
<td>β_{13}</td>
<td>-0.0005 (0.0003)</td>
</tr>
<tr>
<td>β_{23}</td>
<td>0.0007* (0.0003)</td>
</tr>
</tbody>
</table>
Table 2., cont.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient (s.e.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_1</td>
<td>9.400* (0.286)</td>
</tr>
<tr>
<td>σ_2</td>
<td>5.161* (1.258)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.807* (0.063)</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-10,359.6</td>
</tr>
<tr>
<td>U_1</td>
<td>1.012@</td>
</tr>
<tr>
<td>U_2</td>
<td>0.675@</td>
</tr>
<tr>
<td>U_3</td>
<td>0.117@</td>
</tr>
<tr>
<td>Husband's own wage elasticity</td>
<td>0.017@</td>
</tr>
<tr>
<td>Wife's own wage elasticity</td>
<td>0.083@</td>
</tr>
<tr>
<td>Husband's cross wage elasticity</td>
<td>-0.031</td>
</tr>
<tr>
<td>Wife's cross wage elasticity</td>
<td>-0.016</td>
</tr>
<tr>
<td>Husband's income elasticity</td>
<td>-0.0019@</td>
</tr>
<tr>
<td>Wife's income elasticity</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

Notes: Standard errors are in parentheses. * => significant at the 95 percent level (two-tail test). @ => significant at the 95 percent level based on bootstrapping techniques. β_{11} is assumed to equal 1 for identification purposes (see Ransom, 1987: 469). ρ is the correlation between the error terms in the husband's and wife's labor supply equations.
REFERENCES

APPENDIX A

First order conditions of utility maximization problem, labor supply equations, and likelihood function estimated.

As presented by Ransom (1987), the first order conditions set equal to zero that result from maximizing the utility function in equation (5) in the text are:

\[m_1 = \alpha_1^* + \alpha_3^*w_1 - \beta_{11}h_1 - \beta_{33}w_1(w_1h_1 + w_2h_2 + Y) - \beta_{12}h_2 \]
\[+ \beta_{13}(2w_1h_1 + w_2h_2 + Y) + \beta_{23}w_1h_2 \]
\[m_2 = \alpha_2^* + \alpha_3^*w_2 - \beta_{22}h_2 - \beta_{33}w_2(w_1h_1 + w_2h_2 + Y) - \beta_{12}h_1 \]
\[+ \beta_{23}(w_1h_1 + 2w_2h_2 + Y) + \beta_{13}w_2h_1 . \]

(A1)

(A2)

There is no need to specify a time endowment in order to estimate the labor supply functions because \(\alpha_1^* \), \(\alpha_2^* \), and \(\alpha_3^* \) are re-parameterized functions of \(T \), \(\alpha_s \), and \(\beta_s \). This re-parameterization is necessary for identification of the labor supply equations. It is through these starred parameters that differences in tastes across families are allowed to enter. Specifically,

\[\alpha_1^* = X_1\Gamma_1 + \varepsilon_1, \]

(A3)

and

\[\alpha_2^* = X_2\Gamma_2 + \varepsilon_2, \]

(A4)

where \(X_1 \) and \(X_2 \) are vectors of individual and family characteristics, \(\Gamma_1 \) and \(\Gamma_2 \) are parameters to be estimated, and \(\varepsilon_1 \) and \(\varepsilon_2 \) are normally distributed error terms with means zero and covariance matrix \(\Sigma \).

The likelihood function estimated, then, is

\[L = \prod f^*(h_1,h_2), \]

(A5)

where \(f^*(..,) \) is obtained through the transformation of \(\varepsilon_1 \) and \(\varepsilon_2 \):

\[f^*(h_1,h_2) = \text{abs}(J)f(\varepsilon_1,\varepsilon_2), \]

where

\[\varepsilon_1 = X_1\Gamma_1 + \alpha_3^*w_1 - \beta_{11}h_1 - \beta_{33}w_1(w_1h_1 + w_2h_2 + Y) - \beta_{12}h_2 \]
\[+ \beta_{13}(2w_1h_1 + w_2h_2 + Y) + \beta_{23}w_1h_2 , \]

(A6)

and
\[e_2 = X_2 \Gamma_2 + \alpha_3^* w_2 - \beta_{22} h_2 - \beta_{33} w_2 (w_1 h_1 + w_2 h_2 + Y) - \beta_{12} h_1 \]
\[+ \beta_{23} (w_1 h_1 + 2w_2 h_2 + Y) + \beta_{13} w_2 h_1 , \]
(A7)

and the Jacobian, \(J \), has the form:
\[J = (-\beta_{11} - \beta_{33} w_1^2 + 2\beta_{13} w_1) (-\beta_{22} - \beta_{33} w_2^2 + 2\beta_{23} w_2) \]
\[- (-\beta_{33} w_1 w_2 - \beta_{12} + \beta_{13} w_2 + \beta_{23} w_1)^2 . \]
(A8)

The Jacobian is restricted to be positive for internal consistency to ensure that a unique solution exists. Further details can be found in Ransom (1987: 467-8).

In order to obtain estimates for \(dV \) (equation 4 in text), we require expressions for the partial derivatives of the labor supply equations (\(h_1 \) and \(h_2 \)) with respect to \(w_1, w_2, \) and \(Y \). This is accomplished by setting equations A1 and A2 equal to zero and solving the equations simultaneously for explicit expressions for \(h_1 \) and \(h_2 \), respectively. These explicit functions are then differentiated accordingly. These manipulations were performed with the help of Mathematica® (Wolfram Research, version 2.2) for the Macintosh. The derivatives are then evaluated at the sample means and the estimated coefficients.
APPENDIX B

Functions of estimated parameters and their 95% confidence intervals generated by standard bootstrapping techniques.

<table>
<thead>
<tr>
<th>Calculated Variable</th>
<th>Estimate</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_1</td>
<td>1.012</td>
<td>(0.0495, 1.7913)</td>
</tr>
<tr>
<td>U_2</td>
<td>0.675</td>
<td>(0.0987, 1.3334)</td>
</tr>
<tr>
<td>U_3</td>
<td>0.117</td>
<td>(0.0118, 0.1936)</td>
</tr>
<tr>
<td>Husband's own wage elasticity</td>
<td>0.017</td>
<td>(0.0160, 0.1262)</td>
</tr>
<tr>
<td>Wife's own wage elasticity</td>
<td>0.083</td>
<td>(0.0087, 0.2123)</td>
</tr>
<tr>
<td>Husband's cross wage elasticity</td>
<td>-0.031</td>
<td>(-0.0775, 0.0616)</td>
</tr>
<tr>
<td>Wife's cross wage elasticity</td>
<td>-0.016</td>
<td>(-0.0253, 0.1000)</td>
</tr>
<tr>
<td>Husband's income elasticity</td>
<td>-0.0019</td>
<td>(-0.0034, -0.0004)</td>
</tr>
<tr>
<td>Wife's income elasticity</td>
<td>0.0015</td>
<td>(-0.0044, 0.0027)</td>
</tr>
<tr>
<td>dX</td>
<td>-4.64</td>
<td>(-0.8197, -10.838)</td>
</tr>
<tr>
<td>$dV</td>
<td>_{dY=0}$</td>
<td>-0.94</td>
</tr>
<tr>
<td>dV</td>
<td>-0.56</td>
<td>(-0.9981, -0.1059)</td>
</tr>
</tbody>
</table>
No. 1 State and Local Government Finance: Was There a Structural Break in the Reagan Years?; *Growth and Change* 19: 30-48 (1988); Roy Bahl and William Duncombe.

No. 3 The Distribution of Income, Incomplete Information and the Rank and Pareto Criteria; *Public Choice* 59: 195-202 (1988); Rubin Saposnik.

No. 5 Measures of Scientific Output and the Age-Productivity Relationship; *Handbook of Quantitative Studies of Science and Technology* (1988); Paula E. Stephan and Sharon E. Levin.

No. 6 The Jamaican Flat Rate Income Tax; *Proceedings of the Eightieth Annual Conference of the National Tax Association - Tax Institute of America*, Pittsburgh, Pa., 11/87, pp. 121-128; Roy Bahl.

No. 13 Inflation and the Real Growth of State and Local Government Expenditures; *AEA Papers and Proceedings* (May 1990); Roy Bahl and Jorge Martinez-Vazquez.

No. 15 States and the Financial Condition of Cities; *Proceedings of the Eighty-Second Annual Conference of the National Tax Association - Tax Institute of America*, Atlanta, Georgia, 11/89, pp. 81-85; Roy Bahl.

No. 16 The State and Local Fiscal Outlook: What Have We Learned and Where Are We Headed? *National Tax Journal*, Vol. XLIII, No. 3 (September 1990), pp. 321-42; Roy Bahl and David L. Sjoquist.

No. 42 Central City - Suburban Fiscal Disparities; Public Finance Quarterly, Vol. 20 No. 4, October 1992, pp.420-432; Roy Bahl, Jorge Martinez-Vazquez, and David L. Sjostquist.

No. 43 Local Governments and the Current Recession; Proceedings of the Eighty-Fourth Annual Conference on Taxation of the National Tax Association - Tax Institute of America, Columbus OH, (1992), pp. 10-17; Roy Bahl, Jorge Martinez-Vasquez, and David L. Sjostquist.

No. 44 The Economics of Alabama's Proposed Tax Reform; Alabama Law Review, Vol. 43, No. 3 (Spring 1992), pp. 601-653; Roy Bahl.

No. 52 The Effects of State Personal Income Tax Differentials on Wages; Regional Science and Urban Economics, 23 (1993), pp. 611-28; Sally Wallace.
No. 53 Age and the Nobel Prize Revisited; Scientometrics Vol. 28, No. 3 (1993), pp. 387-99; Paula E. Stephan and Sharon G. Levin.

No. 59 Managing Water Resources in Georgia: Lessons from Experiences in the Western States; Journal of Agribusiness, Vol. 11 No. 2 (Fall 1993), pp. 85-100; Ronald G. Cummings.

No. 62 Metropolitan Fiscal Disparities; The Proceedings of the National Tax Association, 11/1993, pp. 186-192; Roy Bahl, Jorge Martinez-Vazquez, and David Sjoquist.

No. 63 Intergovernmental Fiscal Relations in Russia; The Proceedings of the National Tax Association, 11/1993, pp. 78-86; Roy Bahl, Jorge Martinez-Vazquez, and Sally Wallace.

Research Paper Series

No. 1 The Black Youth Unemployment Problem, Keith R. Ihlanfeldt and David L. Sjoquist, August 1989.

No. 2 Multiple Modes of Tax Evasion with Differential Penalties and Probabilities of Detection, Jorge Martinez-Vazquez, August 1989.

No. 6 A Contagion Model of Underclass Neighborhoods, Jorge Martinez-Vazquez and Rubin Sapsonik, April 1990.

No. 9 An Analysis of Georgia’s Sales Ratio Study: A Description and Critique of Procedures, Willis Sheftall and David L. Sjoquist, September 1990.

No. 15 Search Duration and Intermediate, Transitional Work, Julie L. Hotchkiss, April 1991.

No. 16 Tax Administration in Developing Countries with Particular Reference to Road User Taxation, Roy Bahl, May 1991.

No. 20 The Effect of Transitional Employment on the Duration of Search and Subsequent Wage Gains, Julie Hotchkiss, September 1991.

No. 21 The Nexus of Tax Administration and Tax Policy in Developing Countries, Roy Bahl and Jorge Martinez-Vazquez, October 1991.

No. 34 Gender Compensation Differentials in Jamaica, Julie L. Hotchkiss and Robert E. Moore, March 1993.

No. 36 The Spatial Distribution of Black Employment Between the Central City and the Suburbs, Keith R. Ihlanfeldt and Madelyn Young, July 1993.

No. 37 Value and Illegal Behavior, Bruce Seaman, September 1993.

No. 38 Intergovernmental Fiscal Relations in Bulgaria, Jorge Martinez-Vazquez, September 1993.

No. 40 Discrimination Through Payment of Full-Time Wage Premiums, Susan L. Averett and Julie L. Hotchkiss, November 1993.

No. 41 The Challenge of Expenditure Assignment Reform in Russia, Jorge Martinez-Vazquez, February 1994.

No. 49 The Probability of Receiving Benefits at Different Hours of Work, Susan L. Averett and Julie L. Hotchkiss, October 1994.

Policy Research Center
College of Business Administration
Georgia State University
Atlanta, Georgia 30303-3083
Telephone No.: (404) 651-3990
Fax: (404) 651-3996

The Policy Research Center was established in 1988 with the objective of creating a national center of excellence in the study of economic and social policy. The Center draws on faculty resources from throughout the university in carrying out this research program and provides training for students interested in a career in policy research and teaching. The research mandate includes domestic U.S. issues and studies of the international economy.

Georgia State University, a unit of the University System of Georgia, is an equal opportunity/affirmative action institution.